

Outline

- 5G and beyond vision
- Photonics enabled THz wireless communications
- ❖ H2020 TERAWAY: Photonic Integrated Circuits for 5G and beyond systems
- Driving solutions for complex Photonic Integrated Circuits
- Conclusions

5G and beyond vision

- Highly mobile and fully connected society
- More connected devices and more bandwidth hungry applications (human hand-held devices, sensors, machines etc)
- FR2 (24.25 52.6 GHz) and FR2-2 (up to 71 GHz) might not suffice in the near future
- Need to move the operating frequencies to higher bands
- Need for beam-forming (steer the narrow beams)

Available spectrum slots > 90 GHz

W-band: 92 – 114.5 GHz

D-band: 130 – 174.8 GHz

THz-band: 252 – 322 GHz

Main technological challenges related to components at these frequencies:

- Lack of conventional (electronic) broadband signal sources
- Lack of conventional (electronic) broadband receivers
- Lack of electronic beamforming units at such high frequencies

However:

High frequency signals can be generated, processed and received easily using photonic technology

Photonics for the generation and emission of mmWave / THz signals

Using photonic components to seamlessly generate signals in the W, D, THz bands

- Two optical carriers $f_{Lo,1}$, $f_{Lo,ref}$ are generated by tunable laser sources.
- The frequency of the generated RF THz signal will be equal to $f_{THz} = \left| f_{LO,1+} f_{LO,fre} \right|$.
- The first optical carrier is modulated and filtered
- The beating of the modulated optical signal with the reference optical carrier on the high bandwidth PD will generate the modulated RF-THz signal.
- The modulated RF-THz signal is coupled and emitted by an antenna

Changing the frequency difference between the two optical carriers we can seamlessly select the frequency of the emitted signal

Photonics for the down-conversion of mmWave / THz signals to IF

Using photonic components to receive mmWave / THz signals and down-convert them

 f_{THz}

- The THz signal (f_{THz}) is received by an antenna with a photoconductor (PC) between the antenna feed points (a)
- Two unmodulated optical carriers $f_{Lo,1}$, $f_{Lo,2}$ are generated by tunable laser sources (b, c)
- The photoconductance G(t) is modulated at frequency equal to $f_{Lo} = |f_{LO,1} f_{LO,2}|$ (d)
- Changing the frequency difference between the two optical carriers we can down-convert the THz signal to IF (e)

Changing the frequency difference between the two optical carriers we can down-convert the THz signal to IF.

Optical Beamforming Networks on Photonic Integrated Circuits

Operating principle:

 By appropriately adjusting the phase at each AE, the beam can be steered in either direction (azimuth or elevation if 2D

Blass matrix OBFN architecture:

- Operation at optical domain
- Multi-beam capability
- Good scalability (w respect to beams and AEs)
- Independent beam steering using single Antenna array

A new disruptive generation of photonic-enabled THz transceivers for high-capacity BH and FH links in Beyond 5G networks

Concept

- Multi-channel, ultra-wide band transmitters: Generation/emission and of THz/W/D signals with selectable symbol rate and high bandwidth.
- Multi-channel, ultra-wide band receivers: Detection of THz/W/D band signals and their down-conversion to IF.
- Multi-beam operation
- Optical beamforming network on chip
- Hybrid photonic integration combining 3 different materials: Optical polymers, Silicon Nitride, Indium Phosphide

Use case #1: Backhaul connectivity between Fixed Nodes and Moving Nodes

Use case #2: Fronthaul connectivity between Fixed Nodes and Moving Nodes

Hybrid photonics-based platform for ultra-wideband signal generation and emission

TERAWAY Transmitter (Tx) **BeamFormer** OFCG **PolyBoard** 5 InP **TriPleX**

1. Optical carrier generation unit

Tunable Lasers (TLs): Free selection of the emission wavelenath (10 nm range ~ 1 THz)

2. Optical phase locking unit

Injection of Optical Frequency Comb (OFC) back to the cavities of the TLs

3. Optical modulation unit

- Phase Modulators for low-capacity channels
- IQ Modulators for high-capacity channels

4. Optical multi-beamforming and optical filtering unit

Independent steering of the transmitted wireless beams

5. Optical amplification, frequency upconversion and wireless emission unit

Semiconductor optical amplifiers, PIN- photodiodes as photonic mixers and bow-tie antennas

Hybrid photonics-based platform for ultra-wideband signal detection and reception

TERAWAY Receiver (Rx)

- 1. Optical carrier generation unit Same as transmitter
- 2. Optical frequency comb generator unit Same as transmitter
- 3. Optical combining and phase shift unit Introduction of 90° phase difference between copies of the same optical carrier
- 4. Wireless detection and IQ photonic mixing unit Bow-tie antennas and photoconductive elements for downconversion to IF

The Tx and Rx functionalities (Laser tunability, OBFN etc) rely on a large number of phase shifters (heaters), laser diodes etc.

TERAWAY precursor prototypes

TERAWAY Rx:

- 3 Laser Diodes
- 11 heaters on Polymer
- TIAs
- Peltier

TERAWAY Tx:

- 3 Laser Diodes
- 13 heaters on Polymer (~15 Ohm)
- 16 heaters on Si3N4 (~240 Ohm)
- SOAs
- PMs
- Peltier

Multi-channel LD drivers

- up to 500 mA or 1 A
- safety features (soft start, current limit, overvoltage protection)
- For Laser diode arrays, semiconductor optical amplifiers (SOAs) with common cathodes and shared pads

shared pads Robins R

Integrated LD drivers + TEC + DACs

- Integrated LD drivers with TEC controllers
- 2x 16-ch DAC integration for analog signal generation

Multi-channel voltage controlled current sources

- 4x or longer arrays
- In: 0 10 V control signal
- Out: 0 50 mA independent of load

Resistive loads

Multi-channel MHz speed high-V drivers

- Up to 40 MHz bandwidth
- In: 2 V
- Out: 70V
- capacitive loads (PZTs, MEMS etc)

Calibration and configuration algorithms for OBFNs, Optical Phased Arrays (OPAs)

• OPA calibration algorithm soon to be transferred for OBNs

Random start

Ideal - Target

Evolution over calibration

FPGA + DAC platforms

- Generation of analog and IQ signals at MHz with FPGA platforms and DACs
- For optical modulation etc

FPGA and DAC

Conclusions

- ❖ 5G and beyond systems will require higher carrier frequencies. W, D or even THz bands are good candidates as there is still unlicensed spectrum
- Photonics can enable signal generation, processing and detection at higher frequencies seamlessly and with great flexibility
- Generation, detection and beam-forming of mmWave/THz signals using photonic components is being leveraged by TERAWAY project to develop high bandwidth wireless transceiver PICs
- PIC functionality greatly relies on phase shifters (heaters) and laser diodes
- Electronic driving solutions were developed to operate the PICs to full potential and enable standalone operation

Contact:

<u>christos.kouloumentas@optagon-photonics.eu</u> <u>panos.groumas@optagon-photonics.eu</u> https://ict-teraway.eu/

http://www.optagon-photonics.eu