Cloud Orchestration for Optimized Computing Efficiency

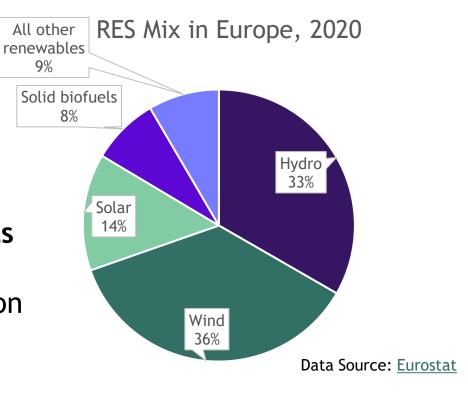
The Case of Wind Resource Modelling

Presenter: Dr. Stamatia Rizou

WindSider Project Overview

Project at a Glance

Project Title	Commercialization of a breakthrough wind resource assessment technology for automated planning of bankable wind farm		
Funded under the Call	H2020-EIC-FTI-2018-2020		
Duration	36 months (January 2020 - December 2022)		
Partners	Technical University of Denmark		
	Singular Logic POLITÉCNICA UNIVERSIDAD POLITÉCNICA DE MADRID		



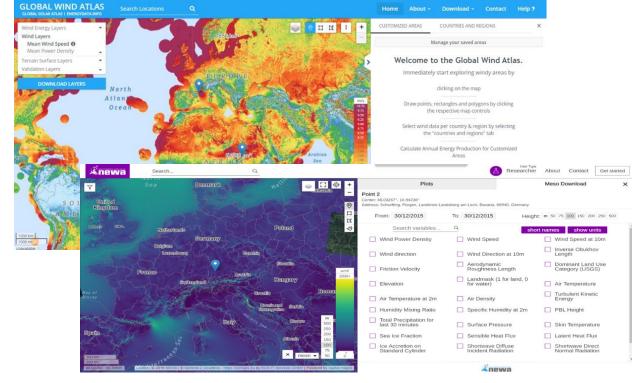
Motivation

Facts & Statistics

Wind energy

- One of the most used Renewable Energy Source (RES)
- Emerging sector attracting huge investments for building new wind farm projects
- Essential pillar of the EU's energy Union vision

Background & Challenges


Need for high accuracy maps

Existing Open Solutions

- ▼ Global Wind Atlas (GWA)
- New European Wind Atlas (NEWA)

Challenges in site identification

- Improve energy estimations
- Reduce time and costs

Project Goal

AI-Powered Wind Data Platform

WindSider provides an **automated** and **cost-effective** solution to generate **reliable** wind resource data and analytics to accelerate decision-making and **lower the risk** of building new wind farms.

Key Innovations

- Reduce processing time and cost
- Ensure bankable precision

Overall Approach

Built on three key pillars

Data Hub

On-the-fly land cover & roughness maps at very high resolution

Combining Numerical Modelling and AI in the Cloud

Smart Analytics

Extra diagnostics
Custom roughness maps
Wind index
Constraints mapping
Yield Calculations

Web Interface

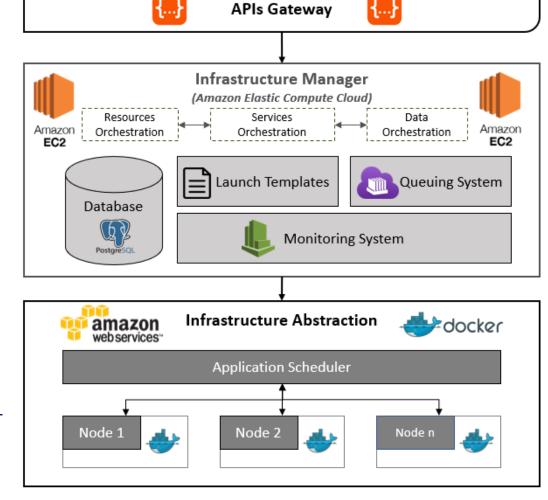
Built upon **GWA & NEWA**User **Personal space** &
Dashboard **Embedded GIS** capabilities
Smart **Analytics** modules

WindSider Cloud Orchestration

Containerized Architecture

Main design & evaluation principles:

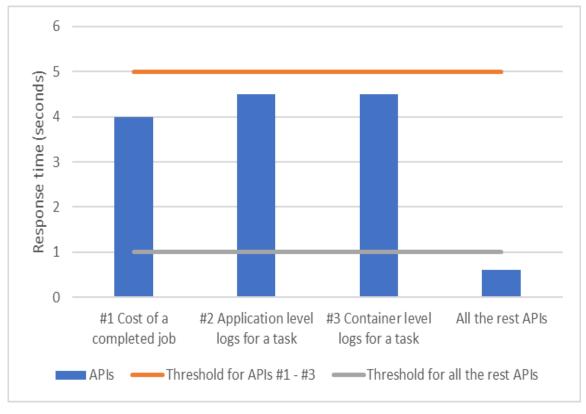
- Enable the dynamic, flexible cloud deployment of containerized wind resource model chains and Weather Research and Forecasting (WRF) jobs
- Interconnect appropriate monitoring tools, by enabling the processing of monitoring data, extracted from the cloud instances
- Define a set of specific, measurable, achievable and relevant key performance indicators (KPIs) to test and evaluate the proposed architecture


Cloud Orchestrator Overview

High Level Architecture

Cloud Orchestrator's responsibilities

- Handle deployment requests for WRF jobs
- Support multiple WRFJobs submissions through a queuing system
- Manage the lifecycle of a running job (Stop, Delete, Restart
- Manage the functional requirements of the jobs (total cost, total execution time etc.)


1st Open Annual Workshop on Future ICT

Evaluation Results

Performance Criteria

Full run of a **real WRF job**, 122 tasks have been deployed on AWS

KPI	Description	Goal
Latency	API to return the cost spent of a completed job	<=5s response time
	APIs to return the application and container level logs of a specific task	<=5s response time
	All the rest available APIs	<=1s response time
Completion time	Completion time is defined as the time a WRF job needs to be completed with exit code '0'	<=24h competition time
Deployment time	Deployment time is defined as the time an on-spot instance needs to be ready for a job deployment	<=5m deployment time

Next Steps & Outlook

Evaluation

Next Steps until the end of the project

- A beta version of the complete WindSider solution will be tested in close collaboration with key industry partners
- Perform technical and business evaluation

www.windsider.io

Thank you

Technical University of Denmark

UNIVERSIDAD POLITÉCNICA DE MADRID

