Leveraging Cloud-native tools as the glue to seamlessly converge different computing worlds

ICCS contribution to H2020 project: EVOLVE

1st Open Annual Workshop on Future ICT

Achilleas Tzenetopoulos 25/5/2022

Supervisor:

Dimitrios Soudris

Team Members:

Sotirios Xydis, George Lentaris, Dimosthenis Masouros, Konstantina Koliogeorgi, Konstantinos Iliakis, Dimitrios Danopoulos, Ioannis Stamoulias, Ioannis Oroutzoglou, Aggelos Ferikoglou, Aimilio<u>s Leftheriotis</u>

Outline

- 1. Related Research & Projects @ Microlab
- 2. EVOLVE H2020: Integrating HPC, Cloud and Big Data worlds
- 3. Al@EDGE H2020: Al Platform for Edge Computing in Beyond 5G Networks

Microlab - ECE Ntua

Microprocessors and Digital Systems Laboratory

- School of Electrical and Computer Engineering @ National Technical University of Athens
- 21 people (2 Professors, 5 Postdoc, 14 Ph.D. students), est. 1985

Microlab - ECE Ntua

Microprocessors and Digital Systems Laboratory

- School of Electrical and Computer Engineering @ National Technical University of Athens
- 21 people (2 Professors, 5 Postdoc, 14 Ph.D. students), est. 1985

Main Areas of Expertise

- High-performance computing
- Cloud, Big-Data and Datacenter technologies
- Heterogeneous platforms
- Embedded and/or reconfigurable processing (with UCs, multi-/many cores, GPU, DSP, FPGA)
- Digital circuit design (VHDL, Verilog, HLS)
- HW/SW co-design and acceleration

H2020 projects

VINEYARD (H2020 2016-2018, P.Coordin.)

heterogeneous platforms (FPGA+GPU+CPU) for datacenter services, acceleration, architecture

AEGLE (H2020, 2014-2018, T.Coordin.)

big data, acceleration of health-care analytics on cloudbased platforms (genomics, diabetes, ICU)

EXA2PRO (H2020, 2018-2020, P.Coordin.)

programming models for HPC and (pre-)exascale apps (quant. comp., materials for CO2 capture,...)

SDK4ED (H2020, 2018-2020)

SW tools for embedded platforms, tradeoff analysis of energy efficiency & security & SW maintenance

5GPHOS (H2020, 2017-2020)

telecom fiber-wireless links, ARoF with low-level DSP acceleration on complex FPGAs (RFSoC)

EVOLVE (H2020 2018-2020)

downstream testbed (HPC+bigdata), Sentinel-2 data EO pilot apps (e.g., agri, maritime, surveillance)

AI@EDGE (H2020 2021-2023)

A secure and reusable Artificial Intelligence platform for Edge computing in beyond 5G Networks

FabSpace 2.0 (H2020 2016-2018)

open-innovation network for geodata-based applications (service-oriented platform for EO)

ESA Funded: HPCB, SPARTAN/SEXTANT/COMPASS, HIPNOS, QUEENS(1/2/3), radiation testing of COTS FPGAs

Market Landscape

Cloud market has been doubled since 2018

HPC growth has been healthy but more modest: **+50%**

The Total HPC Market Including Public Cloud Spending

 TOTAL HPC spending grew from \$22B in 2013 to \$26B in 2017, and is projected to reach \$44B in 2022

Total HPC Ecosystem Spending, including Public Clouds

Big-Data grow on the same pace: +50%

- **EVOLVE** is a European Innovation Action funded by the European Union's Horizon 2020 Research and Innovation programme.
- The project is composed by **19 specialized partners** from **11 European** countries.

• **Budget**: ~15M

• **Duration**: 2018-2021

 Leading the Big Data Revolution

EVOLVE H2020 aims to build a large-scale testbed by integrating technology from three areas:

• **High Performance Computing (HPC)**By providing an advanced compute platform with HPC features and systems software

EVOLVE H2020 aims to build a large-scale testbed by integrating technology from three areas:

- High Performance Computing (HPC)

 By providing an advanced compute platform with HPC features and systems software
- **Big Data**By providing a versatile big-data processing stack for end-to-end workflows

EVOLVE H2020 aims to build a large-scale testbed by integrating technology from three areas:

- High Performance Computing (HPC)

 By providing an advanced compute platform with HPC features and systems software
- Big Data
 By providing a versatile big-data processing stack for end-to-end workflows
- Cloud

By providing ease of deployment, access, and use in a shared manner, while addressing data protection

Pilots & Domains

Automated Driving

Bus transportation

Maritime surveillanve

Sentinel-2 Satellite images

Automotive service

Heterogeneous, HPC enabled HW stack:

<u>Compute</u>: CPUs, GPUs, FPGAs <u>Storage</u>: NFS, IME & Lustre

Network: Ethernet, Infiniband (56Gb/s)

Interoperability & Performance:

<u>Performance-driven plugins</u>: Volcano, iKube, Skynet <u>Data-driven plugins</u>: Unified Storage Layer (Datashim & H3)

Heterogeneous, HPC enabled HW stack:

<u>Compute</u>: CPUs, GPUs, FPGAs <u>Storage</u>: NFS, IME & Lustre

Network: Ethernet, Infiniband (56Gb/s)

Seamless platform integration and workflow deployment:

<u>Karvdash</u>: Interface for accessing EVOLVE's technologies (Kubernetes, USL, Prometheus, Spark, Grafana, Zeppelin) <u>SparkLE</u>: Spark Autotuning framework

Interoperability & Performance:

<u>Performance-driven plugins</u>: Volvano, iKube, Skynet <u>Data-driven plugins</u>: Unified Storage Layer (Datashim & H3)

Heterogeneous, HPC enabled HW stack:

<u>Compute</u>: CPUs, GPUs, FPGAs <u>Storage</u>: NFS, IME & Lustre

Network: Ethernet, Infiniband (56Gb/s)

EVOLVE: Towards Converging Big-Data, High-Performance and Cloud-Computing Worlds. DATE 2022 – MP Projects Session

□ Tools Integration

- ✓ **Container Orchestration**: Kubernetes & Docker
- ✓ **CI/CD**: Git & Jenkins
- ✓ Spark (CPU & GPU)
- ✓ Monitoring: (Prometheus & Grafana)

□ System/Software-level components (performance-driven)

- ✓ Spark Autotuning (SparkLE)
- ✓ Interference-aware container orchestration (iKube)

Use-Cases Integration

(with the provided technologies)

□ GPU & FPGA Acceleration

(of containerized applications)

- To test the acceleration capabilities, we have developed in-house versions of VGG16 and ResNet50 inference models for our target devices
- The use of GPUs and FPGAs yeld speedups that range from 2x up to 11x.

	Execution time (ms)	
Platform	VGG16	ResNet50
TF Intel Xeon Platinum 8153	1067.26	1162.79
TF Nvidia K20Xm	1095.19	410.25
TF Nvidia P40	608.35	187.71
TF Nvidia V100	318.24	143.83
OpenCL Stratix10	103.1	101.21

Interference-aware workload placement for improving latency distribution of converged HPC/Big Data cloud infrastructures. SAMOS 2021

- Extended the default Kubernetes scheduler
- Utilize hardware counters
- Identify shared resource interference
- Socket-level container placement

Bus transportation Radiometric correction

- Container placement on Kubernetes cluster under severe shared resource interference
- Achieved 26% lower median of workloads' distribution on average

Spark auto-tuning (with HiBench)

- Full set of Spark parameters (>150)
- 7 benchmarks for 3 dataset sizes
- Accurate prediction: 82% to 98%
- Improved Spark execution time by **1.8x 3x**

Achieved an average **latency improvement** of **26.3x** related to the legacy deployments

- 1 Automated Driving 8.73x speedup
- **2 Bus transportation** service using observation and historic operational data **24.7x**, **12x** and **114x** improvement on 30 and 90 days transits
- **3** Maritime surveillanve SAR Image processing latency improved by 3.45x
- 4 Radiometric correction and change detection on satellite images 13.84x
- 5 Data-assisted **automotive service** development 7x

Legacy and EVOLVE platform comparison on various use-cases

AI@EDGE: acceleration in AI Platform for Edge Computing in Beyond 5G Networks

Thank you for your attention

Q & A

Achilleas Tzenetopoulos Ph.D. Student @ Microlab ECE NTUA atzenetopoulos@microlab.ntua.gr